skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cassidy, James"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Quantum information processing demands efficient quantum light sources (QLS) capable of producing high-fidelity single photons or entangled photon pairs. Single epitaxial quantum dots (QDs) have long been proven to be efficient sources of deterministic single photons; however, their production via molecular-beam epitaxy presents scalability challenges. Conversely, colloidal semiconductor QDs offer scalable solution processing and tunable photoluminescence but suffer from broader linewidths and unstable emissions. This leads to spectrally inseparable emission from exciton (X) and biexciton (XX) states, complicating the production of single photons and triggered photon pairs. Here, we demonstrate that colloidal semiconductor quantum shells (QSs) achieve significant spectral separation (~ 75-80 meV) and long temporal stability of X and XX emissive states, enabling the observation of exciton-biexciton bunching in colloidal QDs. Our low-temperature single-particle measurements show cascaded XX-X emission of single photon pairs for over 200 seconds, with minimal overlap between X and XX features. The X-XX distinguishability allows for an in-depth theoretical characterization of cross-correlation strength, placing it in perspective with photon pairs of epitaxial counterparts. These findings highlight a strong potential of semiconductor quantum shells for applications in quantum information processing. 
    more » « less
    Free, publicly-accessible full text available November 5, 2025
  2. Quantum shells combine large two-photon cross-sections, long biexciton lifetimes, wide gain bandwidth, to produce stable, multimodal upconverted lasers. 
    more » « less
  3. Semiconductor quantum shells – an emerging nanomaterial class for optical gain media, photovoltaic, and high-energy radiation detection applications. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
    Colloidal semiconductor nanocrystals (NCs) represent a promising class of nanomaterials for lasing applications. Currently, one of the key challenges facing the development of high-performance NC optical gain media lies in enhancing the lifetime of biexciton populations. This usually requires the employment of charge-delocalizing particle architectures, such as core/shell NCs, nanorods, and nanoplatelets. Here, we report on a two-dimensional nanoshell quantum dot (QD) morphology that enables a strong delocalization of photoinduced charges, leading to enhanced biexciton lifetimes and low lasing thresholds. A unique combination of a large exciton volume and a smoothed potential gradient across interfaces of the reported CdS bulk /CdSe/CdS shell (core/shell/shell) nanoshell QDs results in strong suppression of Auger processes, which was manifested in this work though the observation of stable amplified stimulated emission (ASE) at low pump fluences. An extensive charge delocalization in nanoshell QDs was confirmed by transient absorption measurements, showing that the presence of a bulk-size core in CdS bulk /CdSe/CdS shell QDs reduces exciton–exciton interactions. Overall, present findings demonstrate unique advantages of the nanoshell QD architecture as a promising optical gain medium in solid-state lighting and lasing applications. 
    more » « less